长方体的表面积的教案8篇

时间:
Brave
分享
下载本文

优秀教案的使用可以帮助教师更好地安排教学进度和内容,写教案可以帮助教师明确教学目标,二十范文网小编今天就为您带来了长方体的表面积的教案8篇,相信一定会对你有所帮助。

长方体的表面积的教案8篇

长方体的表面积的教案篇1

?教学目标】

[认知目标]:

1. 知道物体外部所有面的总面积叫做它的表面积。

2. 能正确计算正方体和长方体的表面积。

[能力目标]

让学生自主探究正方体和长方体表面积的计算方法。

[情感目标]

通过实际的操作过程,体验学习的快乐。

?教学重点】

掌握与理解正方体、长方体表面积的含义及计算表面积的方法。

?教学难点】

正方体、长方体表面积的推导过程。

?教学准备】

教学课件、长方体、正方体的附页等。

?教学过程】

一、复习导入:

1. 正方形的面积计算公式是什么?

板书:正方形的面积

s = a2

2. 请学生观察老师手中的正方体,回答问题?

(1)正方体有几个面?

(2)有什么特征?

(3)如何计算它们的面积?

3. 这节课让我们学习有关求正方体面积的知识。

4. 揭示课题:正方体的面积

?说明:让学生回忆有关正方体特征的知识,承上启下引导出本堂课的学习内容,激发学生学习的积极性。】

二、探究新知:

(一)正方体的表面积。

1. 小胖将一个棱成为5厘米的正方体盒子沿着棱切开,得到一个正方体表面的展开图。

2. 先仔细观察正方体表面的展开图,然后回答问题?

(1)正方体表面的展开图是由六个什么形状的面组成的?

(2)这六个面的形状都相同吗?

(3)面积都相等吗?

(4)面积的总和是多少?

这个正方体表面的展开图有6个正方形的'面,它们的形状都相同,面积都相等。

面积的总和 = 6 × ( 棱成 × 棱长)

= 6 ×( 5 × 5)

= 150( cm3)

3. 正方体有六个大小相同的正方形面,六个面的面积总和称为正方体的表面积。

4. 小结。

?说明:充分让学生通过已有的知识和经验,小组合作,主动探究求正方体的表面积。】

三、练一练:

(一)求下面正方体的表面积?

1. 正方体的棱长为6dm,求它的表面积。

解: s = 6 a2

=6×6×6

=216(cm2)

答:它的表面积是216平方厘米。

2. 正方体的棱成为7cm,求它的表面积。

一、探一探,练一练:

1. 下面哪些图形能沿虚线相折能围成正方体?先想一想,再利用附页1中的图形试一试。

2. 请学生把附页上的图形剪下后,先估测,然后拼一拼,看看是否能够围成正方体?

3. 交流讨论。(课件演示)

其中:a、c、e、f这四幅能够拼成正方体。

b和d的图形不能拼成正方体。

4.小亚用1立方厘米的正方体积木搭出了一个棱长为3厘米的正方体,并且将它的表面涂上了红色。

(1)三面涂上红色的1立方厘米的正方体积木有多少个?

(2)两面涂上红色的1立方厘米的正方体积木有多少个?

(3)一面涂上红色的1立方厘米的正方体积木有多少个?

(4)没有面涂上红色的1立方厘米的正方体积木有多少个?

5. 学生讨论交流,请学生可以用小正方体搭一搭,找出规律。

6. 利用课件反馈。

7. 小结。

?说明:这里的正方体的展开图并不是这一节的重点,只是为了能帮助学生推导出表面积,并相应地积累空间经验,并在思路上能从“立体”--“平面”--“立体”。第4题计数时要讲究策略:三面有颜色的在八个角上,共8块;两面有颜色的在各条棱上,每条棱上只有1块,共12块;一面有颜色的在6个面的中心,共6块;没有颜色的,只有1块,在“中心”。】

五、巩固练习:

(一)看图练习:

1. 下面的正方体的棱长为5m,先求它的表面积,再求体积。

2. 下面正方体的棱长为0.7dm,先求它的表面积,再求体积。

3. 下面图形中哪些能围成正方体?哪些不能围成正方体?

(二)拓展小练习:

1. 正方体的表面积是96平方厘米,它的一个面的面积是多少平方厘米?它的棱长是多少厘米?

2. 做一个棱长为7dm的正方体无盖木盒,需要多少平方分米的木板?

3. 用一根长60厘米的铁丝,围成一个正方体的小铁筐,在外面贴上手工纸,需要多少平方厘米的手工纸?它的体积是多少?

4. 用3块棱长为3厘米的小正方体拼成一个长方体,面积减少多少平方厘米?

5. 做一个正方体的玻璃金鱼缸,棱长为80厘米,需要多少平方厘米的玻璃?

6. 正方体的棱长是6cm,它的表面积和体积相比较,情况怎样?

7. 一个棱长为4厘米的正方体,在它的角上挖掉一块棱成为2厘米的小正方体(如下图),它的表面积发生了什么变化?是增加、减少、相等还是无法确定?

8. 小结。

?说明:通过练一练和拓展小练习,让学生进一步巩固求正方体表面积的计算方法。】

六、总结:

师:说说今天我们学习了什么知识,发现了什么,对我们有何帮助?你对你今天的学习评价如何?

长方体的表面积的教案篇2

学习内容:

长方体和正方体的表面积练习(教材26页第11~13题)

学习目标:

1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。

2.培养学生分析、解决问题的能力,以及良好的思维品质。

教学重点:

掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题

教学难点:

能灵活地解决一些实际问题

教具运用:

课件

教学过程:

一、复习导入

1.如果告诉了长方体的长、宽、高,怎样求它的表面积?

2. 如果要求正方体的表面积,需要知道什么?怎样求?

3. 一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?

4.一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?

二、课堂作业

完成教材第26页第11~13题。

1.第11题

(1)分析题目的已知条件和问题。

(2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么?

(3)列式解答

4[86+(83+63)2-11.4]

=4[48+422-11.4]

=4120.6=482.4(元)

答:粉刷这个教室需要花费482.4元。

2.第12题

这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的.面积不能算在表面积里。

分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。

左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。

解:涂黄油漆[40(65-10)+4065+4040]2

=(2200+2600+1600)2=12800(cm2)

涂红油漆40652+40403=5200+4800=10000(cm2)

答:涂黄油漆的总面积为12800cm2,涂红油漆的面积为10000cm2。

3.第13题

提示:把一个长方体从中间截断,就可以分成两个正方体。

让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。

小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。

三、课堂小结

通过这节课的学习,你有什么收获?还有什么问题?

四、课后作业

完成练习册中本课时练习。

板书设计:

长方体和正方体的表面积(3)

长方体的表面积(长宽+长高+宽高) 2

正方体的表面积边长边长6

长方体的表面积的教案篇3

教学目标:

通过练习使学生能熟练地求正方体、长方体的表面积。

教学重点和难点:

重点:正方体、长方体的表面积的计算。

难点:正方体、长方体的表面积的计算。

教学媒体:教学平台

课前学生准备:课堂练习本

教学过程:

课前准备:

长方体体积计算公式:v=abh 正方体体积计算公式:v=a3

长方体表面积计算公式:s=2(ab+ah+bh) 正方体表面积计算公式:s=6a2

练习

1. 计算下面形体的表面积。(单位:厘米)

(1)解:

(2)

(1)s=2(ah+ab+bh)

=2×(6×2+6×1+1×2)

=2×(12+6+2)

=2×20

=40(平方厘米)

答:长方体的表面积是40平方厘米。

(2)解:s=6a2

=6×62

=6×(6×6)

=6×36

=216(平方厘米)

答:正方体的表面积是216平方厘米。

(3)解:s=2(ah+ab+bh)

=2×(3×12+3×1+1×12)

=2×(36+3+12)

=2×51

=102(平方厘米)

答:长方体的表面积是102平方厘米。

(4)解:s=2(ah+ab+bh)

=2×(4×4+4×3+3×4)

=2×(16+12+12)

=2×40

=80(平方厘米)

答:长方体的表面积是80平方厘米。

(5)解:s=2(ah+ab+bh)

=2×(5×5+5×1+1×5)

=2×(25+5+5)

=2×35

=70(平方厘米)

答:长方体的表面积是70平方厘米。

2. 想一想,上面形体(4)(5)的表面积还可以怎么求?

求出前面的面积再乘以4就是上下左右4个面的面积之和,再加上前后面的`面积之和,就是它的表面积。

3. 填空:

(1)长方体的表面积是(2×(9×3+9×2+2×3) )(填算式)。

(2)长方体的表面积是(2×(8×1+8×4+4×1))(填算式)。

(3)长方体的表面积是(2×(1×5+1×5+5×5)或5×5+4×(1×5) )(填算式)。

(4)正方体的表面积是(6×(7×7))(填算式)。

(5)长方体表面积计算公式是(s=2(ah+ab+bh))。

(6)正方体表面积计算公式是(s=6a2)。

4. 一个长方体的长是2厘米,宽3厘米,高6厘米。分别求出它的底面面积,前面面积与左面面积。

解:2×3=6(平方厘米)

2×6=12(平方厘米)

3×6=18(平方厘米)

答:它的底面面积是6平方厘米,前面面积12平方厘米,左面面积是18平方厘米。

5. 长方体的长是5厘米,宽4厘米,高3厘米,它的表面积是多少平方厘米?

解:s=2(ah+ab+bh)

=2×(5×3+5×4+4×3)

=2×(15+20+12)

=2×47

=94(平方厘米)

答:长方体的表面积是94平方厘米。

6. 做一个长15分米,宽4米,高3分米的长方体铁皮油箱,至少需要多少铁皮?

解:4米=40分米

s=2(ah+ab+bh)

=2×(15×3+15×40+40×3)

=2×(45+600+120)

=2×765

=1530(平方分米)

答:长方体的表面积是1530平方分米。

总结:长方体表面积计算公式是s=2(ah+ab+bh),正方体表面积计算公式是s=6a2。

检测目标达成练习:练习册p15

长方体的表面积的教案篇4

教学目标:

1、使学生初步掌握长方体、正方体的表面积的概念;

2、学生通过观察、操作、探究等合作活动初步掌握长方体和正方体表面积的计算方法;

3、能较灵活地运用所学知识解答简单的实际问题;

教学设想:

一. 创设情境,引入新知

1.谈话

师:你们快要毕业了,我们班级陈艾菲的妈妈为我们班级的每个孩子准备了一份特殊的礼物。对!是一本长方体的相册,里面有我们班每一个同学的照片。

多媒体:相册

师:我想将这份特别的礼物也送给学校的领导,你们觉得我这个提议怎么样?我打算先将这份礼物包装一下,那我得准备一张多大的包装纸呢?

2.引题

师:你能说说什么是长方体的表面积呢?

板书:长方体六个面的总面积,叫做它的'表面积。

二. 实践操作,探究方法

1.提出问题。

师:长方体的表面积和什么有关呢?

多媒体:已知这本长方体的相册长是30厘米,宽是28厘米,高是5厘米,包装这样一本相册,至少要多少包装纸?

师:小组可以先讨论讨论,再把算式写在纸上,贴到黑板上来。

2. 分组合作进行计算。

3. 小组讨论并把算式贴在黑板上:

方法一:30282+3052+2852

方法二:(3028+305+285)2

4. 在完整解答过程中要注意什么?注意写解,单位。

5. 小结:计算长方体的表面积一般有哪几种方法?

(根据总结,演示多媒体)

6. 练习:

师:老师的难题解决了。那你们昨天不是回家测量了长方体形状物体的长、宽、高,现在你们给同桌求它的表面积好吗?注意只列式不计算。

出示几份学生计算物体的表面积:

(1) 餐巾纸盒

问:求餐巾纸盒的表面积有什么用呢?

(2)大橱

问:求大橱的表面积有什么用呢?

7. 出示课题:

师:今天这节课我们探讨了什么问题呢?

出示课题:长方体的表面积计算

8. 这里有个长方体,看看哪个算式是正确的?

(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是( )

a.272+672+62

b.(27+26+67)2

c.27+26+67

(2)给一个长和宽都是1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是( )

a.(11+13+13)2

b. 112+134

c.112+143

问:那2、3、两个算式有什么道理呢?小组可以先讨论讨论。

师:先说说112+134有什么道理?

(多媒体演示)

生:112求的是上下底的面积,因为上下底是正方形,所以其余4个面的面积都相等,就用13先求出一个面,再4求出4各面的总面积

师:那112+143有什么道理呢?

生:112求的是上下底的面积,正方形的边长就是长方形的宽。14就是4个长方形拼成的大长方形的长,3就是大长方形的面积。

(3)一个长方体的长、宽、高都是4m,它的表面积是多少?( )

a. 444

b. (44+44+44)2

c. 446

问:为什么第3个答案也是正确的?

(多媒体演示)

9.问:这节课你掌握了哪些本领?

完整板书:和正方体

三.巩固练习:

1.出示:五(1)班要办小小图书馆,需要一只长4分米,宽1.5分米,高2分米的铁箱,现在有一张边长6分米的正方形白铁皮,能做的成吗?

(小组讨论)

生:计算的结果是能做成的

生:66=36(平方分米)

(41.5+42+21.5)2=34(平方分米)

师:铁皮的面积是36平方分米,书箱的表面积是34平方分米,看来是够的,那老师就开始做了。

(教师演示)

问:不够了,为什么会不够呢?

问:那怎么办?

生:把旁边多余的切下来移到左面这里,用焊接的方法拼起来。

师:由于我们所用的材料是白铁皮,所以我们可以用焊接的方法拼,那在怎样的情况我们做不成需要的物品了呢?

师:所以在制作物品的过程中,还不能单看表面积的大小是否合适,还需要考虑到其他种种因素,我们不能把所学的知识生搬硬套地运用到实践中去,要具体问题具体分析。

四、课后拓展练习:

多媒体出示:一个火柴盒

问:如果用纸板做一个这样的火柴盒,我们该怎样知道至少要多少纸板呢?可以怎样计算?

师:我就把这个问题留给同学们,请同学们课后来解决好吗?可以独立思考,也可以几个同学合作解决。明天上课时我们来作交流。

五、 课堂小结

师:今天学习了哪些知识?什么是长方体和正方体的表面积?在计算长方体和正方体表面积时要注意些什么呢?

长方体的表面积的教案篇5

教学目标

(一)理解长方体和正方体表面积的意义。

(二)理解并掌握长方体和正方体表面积的计算方法。

(三)培养和发展学生的空间观念。

教学重点和难点

(一)长方体、正方体表面积的意义和计算方法。

(二)确定长方体每一个面的长和宽。

教学用具

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

学具:长方体、正方体纸盒、剪刀。

教学过程设计

(一)复习准备

1.口答填空。

(1)长方体有( )个面,一般都是( ),相对的面的( )相等;

(2)正方体有( )个面,它们都是( ),正方形各面的( )相等;

(3)这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;

(4)这是一个( ),它的校长是( )厘米,它的棱长之和是( )厘米。

2.说一说长方体和正方体的区别?

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)

(二)学习新课

1.长方体和正方体表面积的意义。

教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。

教师:长方体有几个面?学生:6个面。

教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。

请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。

再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。

教师:(拿着长方体盒子)这个长方体的表面积能一眼全看到吗?想一想有什么办法能一眼全看到?

学生讨论。(把六个面展开放在一个平面上。)

教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。

教师:请再说一说什么是长、正方体的表面积。(学生口答。)

教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

2.长方体表面积的计算方法。

(1)请同学拿着自己的长方体(用展开图折上)。教师:请量出它的.长、宽和高,说一说哪些面大小相等?指出相邻的三个面各用哪两条棱作为长和宽?

学生四人一组边操作边讨论后归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;前后两个面大小相等,它是由长方体的长和高作为长和宽的;左右两个面大小相等,它是由长方体的高和宽作为长和宽的。

教师:对长方体实物,我们已经会找它每个面对应的长和宽了,在平面图上会不会找呢?

请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。

教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)

(图像要验证相对的面相等,展示每个面对应的长和宽。)

教师:想一想,长方体的表面积如何计算?

学生讨论后归纳,老师板书:

上下面:长×宽×2

前后面:长×高×2

左右面:高×宽×2

(2)请同学们用新学的知识来解答下面的问题:例1(投影片)做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少厘米2硬纸板?

学生口答老师板书:(或学生板书,同时其余同学填书上。)

解法1:6×5×2+6×4×2+5×4×2

=60+48+40

=148(厘米2)

解法2:(6×5+6×4+5×4)×2

=(30+24+20)×2

=74×2

=148(厘米2)

答:至少要用148厘米2纸板。

练一练:(投影片)一个长方体长4米,宽3米,高2.5米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)

教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?

学生:应该少算上边的一面。列式:

4×3+4×2.5×2+3×2.5×2

3.正方体表面积的计算方法。

(1)教师:看看自己的正方体表面展开图,能说出正方体的表面积如何求吗?

学生:一个面的面积乘以6。

教师:用棱长来表示它的表面积。

学生:棱长×棱长×6

(2)试解下面的题。

例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。

请同学们填在书上,一位同学板书:

32×6

=9×6

=54(厘米2)

答:它的表面积是54厘米2。

教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

学生:少一个面。列式:32×5

教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。

(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)

用学生投影片集体订正。

(三)巩固反馈

1.口答课本p27:1。

2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)

3.口答。判断正误,并说明理由。

(1)长方体的三角棱分别叫它的长、宽、高。 ( )

(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。 ( )

(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。( )

(四)课堂总结及课后作业

1.什么是长、正方体的表面积。长、正方体的表面积如何计算。

2.作业:课本p27:3,4,5。

课堂教学设计说明

长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。

教学过程中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。

本节新课教学分为三部分。

第一部分教学长、正方体表面积的意义。

第二部分教学长方体表面积的计算方法。

第三部分教学正方体表面积的计算方法。

板书设计

长方体的表面积的教案篇6

教学要求

1、根据正方体特征,推导出正方体表面积的计算方法。2、学会解决实际生活中有关长方体和正方体表面积的计算问题。3、培养学生思维的灵活性。

教学重点正方体表面积的计算方法。

教学用具教师准备:一个正方体纸盒和例3的实物模型、投影仪;学生准备:一个正方体纸盒。

教学过程

一、创设情境

1.看图并回答。(投影显示)

(1)什么是长方体的表面积?

(2)怎样计算这个长方体的表面积?

2.看看各自准备的正方体回答问题。

(1)什么是正方体的表面积?

(2)正方体6个面的面积怎样?

(3)如果给你正方体一条棱的长度,你能算出它的.表面积是多少吗?

师:好,今天这节课我们就来学习正方体表面积的计算方法以及长方体和正方体表面积的实际应用。(板书课题)

二、实践探索

1.小组合作学习----正方体表面积的计算。

①题中的棱长就是每个面的什么?

②你能算出这个正方体的表面积吗?

③小组合作,寻找计算方法。

3×3×6或者32×6

=9×6=9×6

=54(平方厘米)=54(平方厘米)

说明:上面两种做法都对,32表示2个3相乘。

2.教学计算长方体和正方体某几个面的面积。

在实际生产和生活中,有时还要根据实际需要计算长方体或正方体中某几个面的面积,如:投影显示例3,拿出实物模型。

(1)帮助学生分析题意。

①售米的木箱是什么体?

②“上面没盖”就是没有哪一个面?

③要求的问题,实际上是算哪几个面的面积之和?

(2)再让学生分小组讨论解答方法,只列式不计算。

(3)学生讲所列出的算式的含义,确定正确后算出结果,集体订正。

三、课堂实践

做第27页的“做一做”,先让学生列出解答的算式,并讲一讲自已是怎样想的,确定正确后算出结果。

四、课堂。

学生今天学习的内容。

五、课堂实践

做练习六的第5、6、7题。

长方体的表面积的教案篇7

教学内容:苏教版六年级数学

教学目标:

1、通过观察、操作等活动认识正方体和正方体的展开图,能在展开图中找到长方体和正方体相对的面,能判断一些平面图形折叠后能否围成长方体、正方体。

2、初步感受平面图形与立体图形的相互转换,发展空间想象能力。

3、进一步感受图形学习的乐趣,增强合作意识。

教学重、难点: 引导学生观察相对的面在不同展开图上的分布情况,发现其中的规律。

教学准备:

教师准备:记号笔、磁铁、长方体和正方体展开图纸12张。

学生准备:一把剪刀、一个长方体、一个正方体纸盒及课本第123页上的图形

教学过程:

课前热身:我们课前先来欣赏一首古诗好吗?出示古诗,全班齐读。

一、激趣导学

1、出示中秋节商店的图片。

师:瞧,再过几天就是中秋节了,商店里卖什么的特别多?(月饼)王老师也想买个月饼礼盒送给家里的老人。

(出示)从数学的角度看,漂亮的包装盒是什么形体的?(长方体、正方体)

2、师:它是怎么做出来的?你知道吗?(出示各种展开的盒子)

(出示课题)。

二、探究解决

(一)初步感知正方体展开图

1、学习例题,出示正方体,依次说出相对的面。

请一个同学上台来剪。

将剪好的展开图放在实物投影上。

问:观察展开图,你发现了什么?

师:同学们想象一下,左右两个面有点像你头上的哪个部位?(两只耳朵)

2、师:这两只耳朵还可以长在哪儿?

师问:想象一下这两个图形沿虚线折叠能围成正方体吗?怎么想的?(出示不对称的图形。)

出不在同一边了,指名学生上来说一说。

引导学生说出:先确定下面,然后在脑海中想象,依次确定后面、上面、右面、下面、左面、前面。

师小结:今后我们在解决此类问题的时候,就可以用边想象边标注的方法。(板书:想象、标注)

(二)、深入认识展开图的规律

1、师:刚才的正方体是按规定的棱展开的,你能沿着其他棱把正方体展开吗?请你用自己动手试试。

活动提示:1、沿棱剪开,不能剪散。2、如果你的展开图黑板上没有,请贴上来。

师:请同学们仔细观察黑板上的展开图有没有重复?将翻转后和旋转后重复的展开图去掉。

师:请同学们数数,一共发现了多少种展开图?

2、面对这些无序的展开图,让我们给它分分类好吗

学生汇报,板书共分四类的方法。

3、找规律记忆的方法。

4、火眼金睛试一试

5、判断(抢答)

(三)长方体展开图的学习

1、出示:拿一个长方体纸盒,沿着一些棱剪开,看看它的'展开图,并与同学交流。

要求:展开后交流一下相对的面有什么特点?

引导总结。

长方体展开图也有11种,出示。

三、拓展延伸

1、"练一练"。

学生打开书独立完成。

2、练习题

(1)出示要求:先想象,后标注,再验证。

(2)学生独立完成。

(3)介绍看互相垂直的棱的方法。

3、思考题:小壁虎的难题

4、欣赏展开的美

其实,许多的立体图形都是可以展开的,让我们一起来欣赏一下好吗?

四、总结升华

出示全课总结让学生说一说

长方体的表面积的教案篇8

?教材分析】

这一课,在本单元中位于"长方体的认识"与"长方体的表面积"之间,起着承上启下作用的一节实践活动内容。目的是让学生通过探索活动,了解长方体和正方体的展开图,培养学生初步的空间观念;"练一练"的目的是通过想像、动手操作进行尝试,强化长方体、正方体与其展开图之间相互转化的认识与理解,进一步培养学生的空间观念。通过本节课的学习,让学生经历和体验图形的变化过程,让学生进一步认识立体图形与平面图形的关系,进一步发展学生的空间观念,提高学生的语言表达能力,养成良好的正确的研究习惯,为后续的学习打下基础。

?学习目标】

1、知识与技能:通过动手操作,知道长方体、正方体的不同的展开图,加深学生对正方体、长方体特点的认识。

2、过程与方法:经历展开与折叠的活动过程,在想象、操作等活动中,初步感知平面图形与立体图形的关系,发展空间观念。

3、情感态度价值观:激发学习数学的兴趣,渗透一种转化的思想及研究方法的学习,体会学科的价值。

?教学重难点】

1、理解掌握长方体和正方体展开图的特征。

2、进一步发展学生的空间观念。

?教学过程】

一、创设情境,引入课题

复习:

1、要焊接一个长10厘米,宽8厘米,高4厘米的长方体框架,一共需要几厘米铁丝?(焊接接头长度忽略不算)

2、用一根长48厘米的铁丝做成了一个正方体的框架,这个正方体的棱长是多少?

创设情情境,引入课题

1、(出示漂亮的大礼品盒,引发学生研究兴趣)想做漂亮的礼品盒么?打算怎样研究?

2、提出研究的方法并揭示课题:展开与折叠(设计意图:创设生活情境,激起学生学习的兴趣;研究的欲望,学生和老师共同提出研究方法,引发学生探究的欲望,为学生的后续学习作好认知和心理的准备。)

二、自主探究活动之一

1、引发猜想,唤起思考:长方体、正方体展开后会得到什么形状的图形?

2、学生动手操作,初步探究。

(1)初步感知长方体、正方体的展开图。

教师提出"展开"的要求:①沿棱剪开,不能剪散②边剪边想,相对的面跑到哪里去了?③把相对的面用相同的符号标出来。教师巡堂,并与学生一起"展开"长方体和正方体。

(2)初步感知"展开"与"折叠"的关系。四人小组交流,教师相机(展开活动)提问:"为什么把展开的图形又折叠回去呢?"

(3)请学生把长方体、正方体各种不同的形状的展开图展示在黑板上。

3、揭示概念,探究特征:

(1)揭示展开图的概念:像这样由立体图形展开后得到的平面图形就叫做长方体(正方体)的展开图。

(2)探究长方体、正方体展开的特征:观察黑板上的长方体和正方体的展开图,有什么特点?引导学生感悟:

①长方体、正方体展开图各小图形的特点

②长方体、正方体展开图的不唯一的特点

③长方体、正方体展开图中相对面的位置特点等(设计意图:通过让学生动手操作,经历和体验图形的.变化过程,使学生知道正方体、长方体的展开图;通过观察、思考感知展开图的不唯一性,加深对正方体、长方体的认识;在找相对面的操作活动中,使学生充分经历展开与折叠的过程,进而发展学生的空间观念。)

三、自主探究活动之二

1、(出示做一做1)下面哪些图形沿虚线对折后能围成正方体?

(1)学生独立思考,进行判断。能围成正方体的在课本上打√,不能围成正方体的打×。

(2)反馈、辨析。

①把你认为不能围成正方体的找出来。说说自己的想法!(鼓励学生想象折叠的过程)多媒体课件演示。(设计意图:把不能围成正方体的图形先提取出来组织讨论,一是容易辨析,二是便于学生表达,三是较易发展学生的空间感。把学生已确认不能围成正方体的图形又用多媒体课件演示,体会不能围成正方体的同时,发展了学生的空间观念。)

②找出能围成正方体的图形。

教师提出要求:能确定哪个图形能围成正方体的请想象一下它是怎样围成的;如果无法确认能否围成正方体的请拿出老师为大家提供的学具折一折,再想象一下。相机点拨1:你是怎样围成正方体的?引出其中一个小图形不动,就是把它作为正方体的底面,其它的小图形围起来就得到一个正方体。同时体会折叠方法的不唯一。相机点拨2:观察正方体的展开图寻找正方体的相对面。 [设计意图:部分学生的正确判断不能代替全班学生知识的掌握,给不同的学生设计不同的要求,在满足不同思维水平学生的需求的同时,更有利于不同层次学生发展空间观念的这一教学目标的达成。]

2、出示做一做2:下面哪些图形沿虚线折叠后能围成长方体?

(1)学生独立思考判断。

(2)小组交流。

(3)反馈、辨析。

①哪些图形沿虚线折叠后能围成长方体?在脑子里想象你是怎样围的。

(学生无疑义的,借助多媒体课件演示。)

②引发争论:4号图形能围成长方体吗?

全班动手折叠验证,说明理由。

多媒体课件演示。

(设计意图:本环节重点放在4号图形的争论上,利用学生的差异资源,充分暴露学生的思维状态,使学生亲身经历猜想、辨析、验证等活动,感受平面图形与立体图形的关系,发展学生数学思考、解决问题的能力与空间观念。)

③哪些图形不能围成长方体?说明理由。

提升思维,深层探究。

四、课后延伸,拓展探究

简单的展开与折叠让我们进一步认识了长方体和正方体,其实这样的方法还可以研究其它的立体图形。相信同学们随着课后的不断研究一定会有了不起的发现。

长方体的表面积的教案8篇相关文章:

小学体育跳绳的教案8篇

小班的绘画活动教案8篇

冬天的小路教案8篇

难忘的教案参考8篇

树木的教案8篇

好玩的皮球教案8篇

画刺猬的教案8篇

采蘑菇的教案8篇

有趣的籽宝宝教案8篇

学礼仪的班会教案8篇

长方体的表面积的教案8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
70612