在编写教案时,教师们需要充分考虑到不同学生的学习节奏,在设计教案的过程中,教师们常常会考虑到课程的前后衔接,下面是二十范文网小编为您分享的五年级数学下册教案6篇,感谢您的参阅。
五年级数学下册教案篇1
教学目标:
1、 从学生原有知识经验出发,引导学生通过主动探索、合作交流的方式掌握带分数加、减法的计算方法,能正确、合理地进行计算。
2、 在探索学习的过程中,培养学生观察、比较、归纳、概括和表述的能力,渗透转化的数学思想。
3、 使学生在学习过程中能获得情感体验,感受到探索成功的喜悦。
教学重点:
带分数加减法的计算方法。
教学难点:
理解的带分数加减法的算理。
教学过程:
一、了解学生的学习经验
1、我们已学过了哪些分数加减法?(板书:分数加减法)
(学生回答:同分母加减法,异分母加减法,1减真分数……)
2、根据你的学习经验想一想:接下去我们还会研究哪些分数加减法?
(学生叙述,教师调控)
设计意图:学生在前面的学习中已经掌握了同分母加减法,异分母加减法。通过复习旧知引新,激活了学生的知识储备,促使学生饶有兴趣地进入主动学习的状态。
3、今天我们就来研究带分数的加减法。(补充课题:带分数加减法)
二、研究算法,探索算理
1、 你能举几个带分数吗?这几个数能组成哪些加减法算式?
(学生举例,教师板演,注意分类。黑板上应有一道同分母的加法、一道同分母减法、一道异分母加法、与一道异分母减法)
2、请大家从这四题中选一道加法与一道减法进行计算,边算边思考下列两个问题
(1)是怎样计算带分数加减法的?
(2)能找到其他不同的方法吗?
(教师巡视,让不同方法的学生板演)
设计意图:给学生充分自由的空间让学生用自己喜欢的方法进行计算,充分调动了学生已有的学习经验。
3、组织学生讨论:你觉得哪种方法好?为什么要这样计算?
(让学生说清楚算法与算理,对板演的不同方法进行对比,得出优化的方法;注意发现有没有“将分数化成小数来计算”的方法出现,如有的话,也可集体认识、辨析一下这样的方法。)
设计意图:在这个提倡和促进了生生互动、师生互动的环节,所有的学生都能够在小组活动中虚心的倾听别人的学习经验中有了针对自己针对不同学习内容的不同的收获,而教师充分参与活动,做活动中学生们的支持者、参与者。
4、 那么你觉得带分数加减法应该怎样进行计算呢?
(带分数相加减,整数部分和分数部分分别相加减,再把所得的数合并起来。)
设计意图:培养学生严密的逻辑思维能力和归纳总结能力及语言表达能力。
三、巩固算理,熟练算法
1、计算。
2、生活应用。
设计意图:巩固所学概念,发现和弥补教学中的遗漏和不足,强化基本技能训练,培养学生良好的学习习惯和品质。
四、小结
学了今天这节课,大家有什么收获吗?
五、课后延伸(机动)
五年级数学下册教案篇2
(一)教学目标
1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。
2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3.理解和掌握分数的基本性质,会比较分数的大小。
4.理解公因数与公因数、公倍数与最小公倍数,能找出两个数的公因数与最小公倍数,能比较熟练地进行约分和通分。
5.会进行分数与小数的互化。
(二)教材说明和教学建议
教材说明
1.本单元内容的结构及其地位作用。
本单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,公因数与约分,最小公倍数与通分以及分数与小数的互化。
学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。在本学期,又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征。这些,都是本单元学习的重要基础。
通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生,从分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。
这些知识在后面系统学习分数四则运算及其应用时都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决一系列实际问题的必要基础。
本单元的内容分为六节,各节的内容的编排体系及其内在联系如下图所示。
五下分数的意义和性质
从上面的图示,不难看出六节教材的内容所具有的内在逻辑联系。
首先,第1节分数的意义和第3节分数的基本性质,是整个单元教学内容的主干,也是本单元教学的重点。第2节真分数与假分数是分数意义即分数概念的引申;第4节约分、第5节通分则是分数基本性质的运用。最后一节沟通了分数与小数在表现形式上的相互联系,得出了分数与小数的互化方法。整个单元的内容,大体上显现出由概念到性质,再到方法、技能的递进发展关系。
其次,在第1节里,分数的意义是学习的重点。在前面学习的基础上,这里引入了两个新的概念,即单位“1”与分数单位。至于分数的产生、分数与除法的关系,则是从分数的现实来源和数学内部来源两方面来帮助学生深化对分数的认识。
在第2节里,先通过三道例题,引入真分数、假分数、带分数三个概念,再通过例4,解决把假分数化成带分数或整数的问题。
在第3节里,先通过例1,得出分数基本性质,然后通过例2,在运用的过程中加以巩固。
在第4、5节里,先引入公因数与公因数,公倍数与最小公倍数的概念,再讨论求公因数、最小公倍数的方法,然后在此基础上,引入约分、通分的概念和方法。
显然,在第2、3、4、5节内部,同样显现出由概念到方法的逻辑关系。
2.本单元教材的编写特点。
与原教材相比,本单元教材的主要改进有以下几点。
(1)多侧面地展现了分数的来源。
在小学数学里,认识分数是小学生数概念的一次重要扩展。考虑到分数概念比较重要,又比较抽象,有必要通过揭示产生分数的现实背景,来帮助学生形成分数概念,理解它的含义。
从现实的角度来看,数是用来表示量的。5只兔、5个人,这些量的共同特征,可以用自然数5来表示。也就是说自然数是一个量(兔、人)与另一个作为单位的量(1只兔、1个人)的比。
现实世界中存在的量,除了上面例举的,由一些单位量合成的,可以用自然数表示多少的量之外,还存在着许多可以分割的,无法用自然数表示的量。例如,用一根作为单位长的木棒(米尺)去量一条线段ab的长,量了3次还有一段pb剩余。
五下分数的意义和性质
这时,运用自然数就只能粗略地说,这条线段长3米多一点。要更精确一些,就必须把度量单位等分成更小的单位,来度量余下的那条线段。比如把1米一分为四,则每等份叫做“四分之一”米,记做1/4米。这就引入了形如1/n(n为大于1的自然数)的分数。假如使用度量单位14米去量图中剩下的一条线段pb,量了3次恰巧量尽,那么pb的长就是“3个1/4”,记作3/4米,这样就又引入了形如m/n(n为大于1的自然数,m为自然数)的分数。历,分数正是为了比较精确地测量这类可以分割的量而引入的。
从数学的角度来看,分数的引入是为了解决在整数集合里除法不是总能实施的矛盾。比如,2÷3在整数范围内不能计算,引入分数就能记作2÷3=2/3。当然,这种抽象的表示方法也有它的实际意义。例如把2块饼平均分给3个人,每人分得2/3块饼。
在本单元的第1节里,教材首先从历史的角度,从现实生活中等分量的需要出发,生动形象地展示了分数的现实来源。
在引出分数概念之后,教材又通过分蛋糕、分月饼的实例,抽象出分数与除法的关系,使学生初步感悟,有了分数,就能解决整数除法除不尽的矛盾。这实际上是从数学内部发展的角度,揭示了分数的来源。
这就为拓宽学生的认识,加深对分数的理解,提供了较为丰富的教学素材。
(2)约数、倍数的有关知识与分数的相关知识结合起来教学。
我们知道,在小学数学中,约数、倍数的有关知识的学习,主要是为学习分数服务的。但在以往的教材中,两者各自独立成章,学完后,学生还不知道学了公因数、公倍数与公因数、最小公倍数有什么用,只能对一组组整数单纯地练习求它们的公因数或最小公倍数。而且,这些知识集中在一个单元里,概念多,而且抽象,不利于分散难点,逐步消化,也不利于认识的螺旋上升。
现在,把公因数、公因数的内容安排在讨论约分之前教学;把公倍数、最小公倍数的内容安排在引进通分之前学习。从而将两部分知识紧密结合起来,学了就用,既能减少单纯的枯燥练习,节省教学时间,又有利于整除性知识的教学改革。为了配合这一改革,约分与通分不再合成一节,而是公因数、公因数与约分编为一节,公倍数、最小公倍数与通分编为一节。
(3)关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。
在本单元中,无论是公因数与公因数、公倍数与最小公倍数的引入,还是约分、通分的给出,教材都创设了适当的现实问题情境,进而在解决实际问题中,抽象出数学的概念,得出数学的方法。这些数学知识,还有利于培养学生的数学应用意识和解决实际问题的能力。
(4)部分内容作了适当的精简处理或编排调整。
本单元中,比较重要的内容精简处理与编排调整,在前面揭示单元内容结构与联系的图示中,已有所显示。这里,再择要作些说明。
其一,分数大小比较,不在第1节中单列一段,而是充分利用前面学习分数初步认识时打下的基础,把有关内容与通分结合在一起学习。这样既进一步简化了第1节的内容,也有利于发挥学习的正向迁移作用。
其二,删去了原来第2节中把整数或带分数化成假分数的内容。这是因为根据课程标准,今后的分数运算中将不含带分数,所以无须再掌握把整数或带分数化成假分数的技能。考虑到把假分数化成带分数,容易看出这个假分数的大小在哪两个整数之间,从而有利于数感的形成;把能化成整数的假分数化成整数,是化简某些计算结果的需要。所以,把假分数化成带分数或整数的内容,仍然保留,但也作了简化,合在一个例题中予以解决。
教学建议
1.充分利用教材资源,用好直观手段。
如前介绍,本单元教材在加强数学与现实世界的联系上作了不少努力,同时,教材还运用了多种形式的直观图示,数形集合,展现了数学概念的几何意义。从而为教师与学生提供了较为丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。
本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、为直观,对于顺利开展教学来说,是十分必要的。所谓化抽象为具体,就是通过具体的现实情境,调动学生相关生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图示来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段。
2.及时抽象,在适当的抽象水平上,建构数学概念的意义。
为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如:比较1/3与1/2的大小,有学生回答,不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出1/3可能比1/2大,也可能比1/2小,还可能和1/2相等。造成这种错误认识的主要原因,就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识基础上,要不失时机地引导学生由实例、图示加以概括,建构概念的意义。
3.揭示知识与方法的内在联系,在理解的基础上掌握方法。
在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。
4.这部分内容可以用20课时进行教学。
五年级数学下册教案篇3
教学目标:
(一)知识目标
1、理解小数除法的意义。
2、掌握小数除以整数(恰好除尽)的计算方法。
(二)能力目标:能够在情境中发现问题、提出问题,在观察比较的过程中感受小数除法的异同,能够与他人合作交流解决问题。
(三)情感目标:经历探索小数除以整数(恰好除尽)计算方法的过程,体验获得成功的乐趣。
教学重点:
小数除法的意义,小数除以整数(恰好除尽)的计算方法。
教学难点:
商的小数点与被除数的小数点对齐。
教学方法:
探究、交流、引导。
教学过程:
一、导入新课,创设情境
1、淘气打算去买牛奶,你从图上得到了什么数学信息?
2、根据图上的数学信息,你能提出哪些数学问题?
3、教师根据学生提出的问题,引导学生列出算式: ÷5 ÷6
引导学生观察这两个算式与以往我们学过的除法算式有什么不同。(被除数都是小数,除数都是整数。)
师:我们今天就来研究小数除以整数的计算方法,看看淘气到底应该买哪个商店的.牛奶。
二、探索新知,解决问题
1、师:两个商店牛奶的单价分别是多少呢?我们先算一算甲商店的牛奶单价。
2、学生交流讨论,教师巡视指导。
3、教师引导学生比较汇总的各种方法,认为哪个方法比较简便实用?
引导出“商的小数点与被除数的小数点对齐”。
4、理解算理。
5、引导归纳总结,明确小数除法的计算方法:按照整数除法的计算方法; 商的小数点与被除数的小数点对齐。
6、学生尝试计算,教师巡视指导。
三、巩固练习,拓展延伸
1、完成教材第3页练一练第1题。
集体订正。
2、我是小小神算手。
÷4 ÷42 ÷31
引导学生通过对比发现小数除以两位数与除以一位数的,都要注意商的小数点要与被除数的小数点对齐。
3、完成教材第3页练一练第4题。
教师巡视指导。
四、全课总结
今天你有什么收获呢?
板书
甲商店牛奶每袋多少钱? 乙甲商店牛奶每袋多少钱?
÷5=(元) ÷6=(元)
五年级数学下册教案篇4
教学目标:
1.运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。
2.掌握画线段图分析问题的方法,感受画线段图的策略在分析问题中的好处,培养学生运用线段图进行分析问题的意识。
3.培养学生良好的逻辑思维能力,鼓励学生在合作交流中激发自主探究、创新的精神。
教学重点:
理解和差问题的解题思路,掌握和差问题的解题方法。
教学难点:
掌握画线段图分析问题的方法,培养学生运用线段图进行分析问题的意识。
课前准备:
课件
教 学 过 程
二次备课
一、谈话引入
1.课件出示:小明买3本故事书用了27元,小军买了5本同样的故事书需要多少元?
(1)将题目中的信息整理到下面的表格中。
小明 3本 27元
小军 5本 ?元
(2)分析表格中的信息,明确解题思路。
引导学生明确:可以先算出一本故事书多少元,再计算出5本故事书多少元。
(3)学生独立解答。
一本故事书:27÷3=9(元)
5本故事书:9x5=45(元)
2.谈话导入。
刚才我们采用了哪种解决问题的策略?(列表)
师:通过列表的策略来分析数量关系,可以让一些复杂的问题变得浅显。除了列表这种解决问题的策略外,还有许多其他的解决问题的策略,同学们想学吗?今天我们就一起来学习新的解决问题的策略。(板书课题)
二、交流共享
1.课件出示教材第48页例题1。
让学生读题,说说题目中的已知条件和所求的问题。
已知条件:小宁和小春共有72枚邮票;小春比小宁多12枚。
所求问题:两人各有邮票多少枚?
2.交流解题策略。
提问:想一想:这道题我们用列表的方法来分析,能找到解题思路吗?
学生交流得出:由于两人的邮票数量都是未知的,用列表的方法进行分析,不容易找到解题思路。
引导:接下来我们就来学习用画线段图的策略来分析这道题。
3.根据题意画线段图。
(1)提问:题目中有几个相关联的量?应该用几条线段来表示呢?学生回答后课件出示:
小宁:
多( )枚 ( )枚
小春:
(2)追问:你能根据题意把线段图填写完整吗?
让学生在教材的线段图上填一填,完成后组织汇报交流。
小宁:
多(12)枚 (72)枚
小春:
4.看线段图,分析数量关系。
提问:观察线段图,想一想可以先算什么?
(1)学生独立观察思考后,小组交流讨论。
(2)全班交流解题思路。
汇报预测:
解题思路一:先算出小宁有多少枚邮票。两人邮票的总数减去12枚,等于小宁邮票枚数的`2倍。
解题思路二:先算出小春有多少枚邮票。两人的总数加上12枚,等于小春邮票枚数的2倍。
5.学生独立解答。
引导学生选择一种自己喜欢的方法解答。
6.组织检验。
(1)提问:我们用什么方法进行检验?
(2)追问:检验要分几步进行?
(3)学生独立进行检验,并写出答案。
7.回顾反思。
引导:回顾解决问题的过程,你有什么体会?
先让学生在四人小组内说一说自己的体会,再组织全班交流。
8.交流讨论。
在之前的学习中,我们曾经运用画图的策略解决过哪些问题?
三、反馈完善
1.完成教材第49页“练一练”。
这道题和例题1相似,只不过要让学生自己从线段图中获取已知条件,通过这样的练习可以培养学生的读图能力。
2.完成教材第52页“练习八”第1题。
这道题也和例题1相似,但题目要求先把线段图补充完整,组织练习时要把重点放在线段图的画法上。
3.完成教材第52页“练习八”第3题。
这道题练习的重点应放在观察线段图、分析数量关系上,引导学生从线段图上看出下层图书的2倍就是60x2=120(本)
四、反思总结
通过本课的学习,你有什么收获? 还有哪些疑问?
五年级数学下册教案篇5
一、复习分数的意义
1.课件出示:说说下面各分数的意义以及分数单位。
8/9 2/3 5/4 4/7 11/3
同桌互说,指名口答。
2.书本114页第7题
(1)学生独立完成,同桌先交流。
(2)全班交流,明确3/4有两种表示意义的方法。
二、复习真分数和假分数
1.书本115页的9题
(1)学生独立完成,同桌互说分类标准。
(2)交流时说说真假分数的特征。
2.把上题的假分数化成整数或带分数。
(1)学生做完后交流。
(2)明确化成整数的就爱分数有什么特点?
三、复习分数与除法的关系
1.指名说说分数与除法的关系。板书:a÷b=a/b (b不等于0)
2、书本115页第8题
利用分数的基本性质可以……
四、复习约分通分
1.课件出示:找出下列分数中的'最简分数,能约分的要约分。
22/8 42/16 40/105 49/7 39/26 27/18
学生独立完成,讲评时强调要约成最简分数。
2.书本115页第11题
(1)同桌互说各单位间的进率。
(2)独立完成,教师巡视提醒约分。
(3)全班交流。 1/4 2/3
3.课件出示:把下列每组中的两个分数通分。
3/8和7/10 5/16和1/4 3/10 和3/4
(1) 学生独立完成,4人扮演。
(2) 说说通分的注意点。
五、复习分数比较大小
1.指名说说比较分数大小的方法。
2.你会灵活选择合理的方法比较大小吗?
书本115页第10题
(1) 学生独立完成,教师巡视查看学生选用比较大小的方法。
(2) 讲评时说说哪种方法更合理?
(3) 总结。
六、全课总结
七、布置作业
五年级数学下册教案篇6
教学过程:
一、课前复习
1、判断下面各式是不是方程
30+x=150 x-54>80 65—45=20 7x=56
2、根据题意列方程
(1)山东省高中学历的人数是1002万人,是大专学历的3倍,大专学历的人数是x万人。
(2)山东省总人口是9079万人,其中男人4595万人,女人x万人
(3)山东省乡村人口是5629万人,比城镇人口多2179万人,城镇人口是x万人。
二、合作探索:
1、出示情景图:让学生看图及下面的信息,你知道了哪些信息?(2004年6月1日黔金丝猴数量已从1993年的600多只,增加到860只。)根据信息你能提出什么问题?
2、提出问题,解决问题。根据学生的回答,教师把问题板书出来:2004年比1993年大约增加了多少只黔金丝猴?
根据提出的问题,同学讨论应该怎样列式解答。放手让学生自己解答,个别学生老师指导。指名回答。用算术方法解答:860—600=260(只)除了算术方法你能根据题意列出含有未知数的方程吗?具有怎样的等量关系?(1993年的只数+增加的只数=2004年的只数。用x表示增加的只数,可列方程:600+x=860)
3、合作探索,找出解决问题的方法。
这个方程怎样求出x呢?
让学生讨论找出解决问题的方法。我们可以借助天平来研究一下:在天平的左边放上一瓶啤酒,要使天平平衡右边也要放上同等重量的东西,天平才能平衡。如果在左边加上10克重的物体,要使天平平衡右边也要加上10克重的物体,反过来在左边减去10克的物体,要使天平平衡右边也要减去10克的物体,看教材62页图,这说明了什么?(说明了等式的两边同时加上或减去同一个数,等式仍然成立。)
同桌看图讨论:天平左边的盘子里是x,右边的盘子里是20 ,这时天平平衡那么说明了什么呢?(说明x=20的时候才能使天平平衡,也就是等号两边正好相等。
师小结:我们可以借助这个发现来求出方程里面的未知数x。我们把使方程左右两边相等的.未知数就叫做方程的解,x=10是x+10=10+10的解,而求方程的解的过程叫做解方程。解方程和方程的解是两个不同的概念。
4、解方程,体会解方程和方程的解有什么不同?
我们来解600+x=860这个方程,教师一边板书,一边指出解方程的步骤;
先写个“解”字,然后根据等式两边同时减去一个数等式仍然成立,同时减去600,理解解方程过程的简化书写,并且解题时适当运用简化书写。
教师示范解题过程,关注“解”和“等于号”书写要求。
指导检验:x=860是不是正确答案呢?如何检验?教师板书检验过程。
5、课堂练习:出示:x―30=80 反馈,关注书写过程并说说检验过程。
三、综合练习:
1、完成书本第64页自主练习1题,学生完成后同桌交流
2、括号里哪一个x的制式方程的解?
43+x=62 (x=105 x=19) x-56=37 (x=19 x=93)
先独立思考,学生回答,并说说自己的想法
3、看图列方程。
出示自主练习的第2题,学生看图列式。
提问:什么是等式?什么是方程?解出上述方程。
四、学习回顾:
通过学习,你知道了什么?有哪些收获?个人课堂学习表现如何
学生选择两题(加法方程和减法方程各一个)独立完成,要求写出检验过程,反馈计算情况。
作业设计:
1、基础作业:自主练习1、2、3
2、拓展作业:一点通:部分练习
板书设计:
解简易方程
解;:设大约增加了x只黔金猴。
600 + x = 860
600+x-600 = 860-600
x =260
检验:方程左边=600+x
=600+260
=860
=方程右边
所以,x=260是方程600+x=860的解
五年级数学下册教案6篇相关文章: