五年级数学下册数学教案最新6篇

时间:
Gourmand
分享
下载本文

教师们在撰写教案时,很多时候会参考学生的学习曲线,在编写教案时,教师们需要充分考虑到不同学生的学习节奏,下面是二十范文网小编为您分享的五年级数学下册数学教案最新6篇,感谢您的参阅。

五年级数学下册数学教案最新6篇

五年级数学下册数学教案篇1

设计说明

复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成就感”,还担负着查缺补漏、系统整理和巩固发展的任务。为了让每个学生都积极参与复习,在组织教学时,应该营造一个轻松、平等、和谐的学习氛围。让学生在独立思考、合作交流的过程中“温故而知新”。

1.创造性地使用教材。

在教学设计中,灵活地运用教材,既不要夸大它的作用,又不要削弱它的功能,要创造性地发挥它应有的功能。作为复习课,设计要有新意,要创造性地使用教材,因此本节课的教学设计进行了适当的处理,这样更符合本地区学生的实际需求。

2.重视对学生解决问题能力的培养。

教学中,把所学的知识进行回顾,然后利用这些知识来解决问题,结合教材习题逐一练习。通过练习,将学生所学的知识整理成知识网络,提高学生解决问题的能力。

课前准备

教师准备 ppt课件

教学过程

⊙导入新课

1.同学们,这节课我们结合教材习题,复习分数加减法这一单元的内容。想一想,这一单元我们都学习了哪些内容?

2.学生独立思考后,在小组内交流。

(异分母分数加减法的计算方法、分数加减混合运算的运算顺序及简算、分数与小数的互化三部分内容)

3.小组汇报,全班交流,互相评价,呈现知识结构图。

分数加减法

设计意图:引导学生回顾分数加减法的相关知识,复习本节课中的知识点,在教师的引导下画出知识结构图,帮助学生建立这部分知识内容的知识网络,便于学生整理和记忆相关知识。

⊙整理复习

1.复习异分母分数加减法的计算方法。

(1)复习异分母分数加减法应注意什么?结合具体实例说一说。

(2)先想一想异分母分数加减法应该怎样计算,再计算下面各题。

+ -

结合上面的算式复习异分母分数加减法的计算方法:①异分母分数相加减:先通分,然后按同分母分数加减法的计算方法进行计算;②分数加减法对计算结果的要求:能约分的要约成最简分数。

(3)完成教材94页1题前两个小题的计算。

+ -

解答: + -

=+=-

==

2.复习分数加减混合运算的运算顺序。

(1)先想一想分数加减混合运算应该怎样计算,再计算下面各题。

+- -+

1-- 1-

①复习分数加减混合运算的'计算方法。

在计算分数加减混合算式时,主要有以下两种方法:一是先将所有的分数全部通分,再进行计算;二是先通分需要进行通分的部分,再进行计算。

②复习分数加减混合运算的运算顺序。

分数加减混合运算的运算顺序和整数加减混合运算的运算顺序相同。没有括号的,要按照从左到右的顺序依次进行计算;有括号的,要先算括号里面的,再算括号外面的。

③学生在小组内讨论、计算后交流结果。

(2)完成教材94页3题最后一竖排两个小题。

+- -

=+-=-

=- =-

== =

①引导学生观察第2个小题,课件出示学生的不同解法。

--

=-- =--

=- =-

= =-

=-

②从上面的解法中,你发现了什么?

学生讨论、交流后小结:整数加减法的运算定律对分数加减法同样适用。

3.复习分数与小数的互化。

先想一想分数、小数是怎样互化的,再计算下面各题。

0.75=( ) =( )

2.12=( ) 4=( )

五年级数学下册数学教案篇2

课题:

列方程解应用题复习(行程问题)

学情分析:

相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

教学目标(课时目标):

1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

3、逐步掌握画线段图分析题目的方法。

教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

教学难点:认识相遇的过程中理解运用等量关系的解决问题。

教学准备:ppt、练习本

教学过程:

教学活动教学说明

一、复习引入

1、揭题

2、常见的相遇问题类型(手势演示)

(1)同时出发,相向而行

(2)一车先行,另一车再行,相向而行

(3)同时出发,途中一车暂停,相向而行

二、基础练习

1、ab两地相距1000千米,甲列车从a开出驶往b地,2小时后,乙列车从b地开出驶往a地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

(1)画线段图分析题意

(2)找出等量关系

(3)列式

2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

小结:(1)相加=总路程

(2)相差=路程差

3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往b城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

小结:(3)到中点相等

4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

小结:(4)总路程相等

三、巩固提升

5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

四、思维训练

9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

“相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

板书设计:列方程解应用题(行程)

相遇问题(1)相加=总路程

(2)相差=路程差

(3)到中点相等

(4)总路程相等

教学反思:

行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

1、合理组织安排教材,激发学生主动参与教学

首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

2、运用线段图进行教学,培养学生的分析、观察能力

学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

3、为学生提供充分的思考、分析的空间

在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的'用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

4、分层递进,满足不同层次需求

在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级数学下册数学教案篇3

教学目标

一、知识与技能

1.认识正方体,掌握正方体的特征。

2.理解长方体与正方体的联系与区别。

3.发展空间观念。

二、过程与方法

经历观察实物和动手操作等活动,掌握正方体的特征。

三、情感态度与价值观

体验合作探究的乐趣,感受数学与生活的联系,培养学生的创新意识。

教学重点:掌握正方体的特征。

教学难点:理解长方体和正方体的关系。

教学准备:正方体纸盒、长方体和正方体对比教具、多媒体课件。

课时安排:1课时。

教学过程

一、复习导入

1.回忆长方体的特征,请学生用语言进行描述。

2.操作:同桌交流,分别说出长方体的棱有几条?可以分别分成几组?相交于同一个顶点的三条棱叫做什么?

师:今天这节课,我们继续学习一种特殊的立体图形。

二、新课讲授

1.探索正方体的特征。

学生拿出准备好的正方体纸盒,观察并思考。

师:这些都叫什么立体图形?

生:都是正方体。

师:要探究正方体具有什么特征,我们应该从哪方面去思考?

生:从面、棱、顶点这三个方面

2.合作学习。

学生根据手中的正方体学具,小组合作探究。

3.集体交流。

(1)组:正方体有6个面,6个面大小都相等,6个面都是正方形。

(2)组:正方体有12条棱,正方体的12条棱的长度相等。

(3)组:正方体有8个顶点。

请学生到讲台前,手指正方体模型,按“面、棱、顶点”的特征有序地数一数,摸一摸,其他同学观察思考。

师:怎样判断一个图形是不是正方体?

4.教学正方体和长方体的联系与区别:

老师出示一个正方体教具。请学生讨论:它是不是一个长方体?

学生充分讨论,集体交换意见。

学生甲组:这个物体的六个面都是正方形,它不是长方体。

学生乙组:长方体6个面是对面的面积相等,而这个物体是6个面的面积相等,所以我们也认为它不是长方体。

学生丙组:我们组有不同意见,因为我们认为它的6个面虽然都是正方形,但是正方形是特殊的长方形,它的12条棱也包括每组4条棱长度相等;6个面面积相等,也包括了相对的面面积相等这些条件,所以我们认为它是长方体。

师:我们把长、宽、高都相等的长方体叫做正方体或者叫立方体。

三、课堂作业

1.教材第20页的“做一做”。

2.教材第21~22练习五的第4、5、8、9题。

四、课堂小结

今天这节课,大家有什么收获?(学生畅所欲言谈收获,教师将学生的发言进行总结)

五年级数学下册数学教案篇4

教学目标:

1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。

2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。

3、培养学生动手操作、抽象概括、归纳推理的能力。 教学

教学重点:

使学生理解长方体的体积公式的推导过程,掌握长方体体积的计算方法。

教学难点:

理解长方体的体积公式的推导过程。

课前准备:

小正方体若干个 教法学法 合作法、讨论法

教学过程:

教学环节 第一次备课 动态修改

一、复习导入

1、字典是我们学习的工具书,必须要常备身边的,小明遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?

2、小明在上学的路上,遇到两个物体,怎样才能比较大小呢?3、小明家买了饮水机和微波炉,谁的体积大呢?还能分割吗?怎么办?

这节课我们就来学习长方体的体积的计算。 (小本的字典,体积小)

(分割成若干个小正方体,再比较,求长方体的`体积就是求长方体所含有多少个这样的体积单位。)

二、概括公式

1、学生猜想

一个物体的大小和什么有关呢?

(1)长、宽相等的时候,越高,体积越大。

(2)长、高相等的时候,越宽,体积越大。

(3)高、宽相等的时候,越长,体积越大。

与长、宽、高都有关系。

大胆猜测长方体的体积怎样计算

学生猜想:长方体的体积=长宽高

2、动手实践操作

这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。

课件出示记录表。(课本29页)

(1)提出小组合作要求

请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,每拼成一种就记录下它的长、宽、高和体积各是多少,然后计算出来验证刚才的猜想是否正确。

(2)小组合作学习

(3)小组派代表汇报

生:把4个正方体摆成1排,每排4个,摆1层。这个长方体的长是4厘米,宽是1厘米,高是1厘米,体积是4立方厘米。

五年级数学下册数学教案篇5

教学目标

1、知识与技能

让学生在条形统计图的基础上认识折线统计图,进一步体会统计在现实生活中的作用,体会数学与生活实际的密切关系。

2、过程与方法

使学生认识折线统计图的特点,会看折线统计图,并能根据数据进行合理分析,培养学生的合作意识和实践能力。

3、情感态度与价值观

能从统计图中发现数学问题、解决问题,并能体会统计知识在生活中的意义和作用。

教学过程

(一)情境引入

师:同学们都喜欢机器人吗?同学们可以自己制作,锻炼动手能力。我们了解到xx~xx中国青少年机器人参赛队伍的参赛队伍支数情况,于是做了一份统计图。出示条形统计图。你能从中获得什么信息?回忆条形统计图的特点。

(二)探究新知

1、为了更明显的看出各年参观科技馆的人数增减情况,我们来学习一种新的统计图。

出示折线统计图(板书标题:折线统计图)

说一说它的横轴、纵轴分别表示什么?

统计图上的各点又表示什么意思?

2、分析折线统计图

小组讨论:

(1)中国青少年机器人参赛队伍的数量有什么变化?你有什么感想?

(2)折线统计图有什么特点?

小组交流汇报讨论结果。

师带领学生从点和线两方面分析总结折线统计图的特点。

师问:在折线统计图中我们是用什么来表示数据?(板书:点表示数量的多少)

我们明明用点来表示数量的多少,而它却叫做折线统计图你,说明这些线段中肯定藏着一些奥秘。

师问:观察一下折线统计图里面的各条线段,它们有什么作用?

(板书:线表示数量的增减变化)

3、中国已经进入老龄化社会,尤其是上海,早在20世纪70年代末就进入了老龄化。出生人口数和死亡人口数是重要的影响因素。下面是一个小组调查的xx—xx年上海出生人口和。小组讨论:如果要看出生人口数和死亡人口数变化情况,该怎么办?

分别出示上海出生人口数和死亡人口数统计图。

4、提问:请比较出生人口数和死亡人口数变化情况。怎样才能更方便地比较呢?

(1)出示复式折线统计图,指出复式折线统计图的标题和图例在制图中一定要有。

(2)复式折线统计图与单式折线统计图与什么不同?

复式折现统计图可以更方便的分析两个数量增减变化情况。

5、根据复式折线统计图回答问题

(1)观察复式折线统计图,你说说上海出生人口数、死亡人口数的变化趋势吗?

(2)每年的出生人口数和死亡人口数之间存在什么关系?

(3)结合全国xx—xx年出生人口数和死亡人口数统计表,你能发现什么共同的规律吗?(如下表)

年份

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

出生人口数/万人

1708

1652

1604

1598

1621

1589

1599

1612

1619

1596

死亡人口数/万人

821

823

827

835

851

895

916

938

942

953

三、知识巩固

1、甲乙两地月平均气温见如下统计图。

(1)根据统计图,你能判断一年气温变化的'趋势吗?

1、2月份气温最低,从3月份气温上升,5~8月份气温最高,从8月份开始,气温下降。

(2)有一种树莓的生长期为5个月,最适宜的生长温度为7~10之间,这种植物适合在哪个地方种植?

这种植物在甲地种植比较合适。

2、陈明每年生日时都测量体重。下图是他8~14岁之间测量的体重与全国同龄男生标准体重对比的统计图。

(1)陈明的体重在哪一年比上一年增长的幅度最大?

14岁比13岁增长的幅度最大。

(2)说一说陈明的体重与标准体重比变化的情况。

四、课堂小结

重点:了解折线统计图的特点,会看折线统计图,能根据折线统计图对数据进行简单的分析。

难点:弄清条形统计图与折线统计图的区别。

五年级数学下册数学教案篇6

教学目标:

1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

教学重点:

探索,发现和掌握分数的基本性质,并能运用分数的'基本性质解决问题。

教学难点:

自主探索,归纳概括分数的基本性质。

教具学具准备:

多媒体课件,正方形纸,彩笔。

教学

一、创设情境,导入新课:

1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

3.学生初步感知了什么变了而什么却没有变的概念。

4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

二、探究新知。

(一):师:1.在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)=

2.同学们说说这几道相等吗?(指名回答)。

3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

(二)、教学新知。

1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

2.学生操作,教师巡视并特别提醒学生注意“平均分”。

3.展示学生的作业。

4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

6.引导学生观察:

观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

7.课件出示:(通知互相讨论)

(1)相比较,看看分子分母有什么变化?

(2)在这个变化中,你们发现了什么规律。

8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

师:分数的基本性质和商不变性质的规律是一致的。

三、巩固强化,拓展应用。

(1)课件出示:(集体回答)。

(2)指出下列分数是否相等。(指名回答)。

(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

(4)课件出示小故事。

有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

四、回顾总结,梳理新知。

同学们,你们对分数又有了哪些新的了解呢?板书分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

教学反思:

1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级数学下册数学教案最新6篇相关文章:

数学二年级下册工作总结精选5篇

数学三年级下册工作总结5篇

数学三年级下册工作总结优质7篇

小学数学二年级下册工作总结推荐8篇

小学数学三年级下册工作总结7篇

2024八年级下册数学教学工作总结7篇

2024年三年级下册数学教学工作总结优秀7篇

苏教版小学五年级数学上册教案8篇

人教版小学数学五年级教学计划8篇

五年级上册数学教学工作计划5篇

五年级数学下册数学教案最新6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
82729