我们在实施教案时,应该留有空间适应课堂的变化,一份详细的教案能够帮助教师明确教学目标和重点内容,下面是二十范文网小编为您分享的初三数学课教案6篇,感谢您的参阅。
初三数学课教案篇1
教学过程
一、议一议
探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b).师生共同分析:此题是做除法运算,可以从两方面思考:根据除法是乘法的逆运算,将除法问题转化为乘法问题去解决,即( )x = x y,由单项式乘以单项式法则可得(x y)x = x y,因此,x yx =x y . 另外,根据同底数幂的除法法则,由约分也可得 =x y.学生动笔:写出(2)(3)题的结果. 教师板书: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc师:以上运算是单项式除以单项式的运算,你能说说如何进行单项式除以单项式的运算?学生活动:小组讨论,教师引导学生从系数、同底数幂、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,其余同学补充纠正.出示单项式除法法则(投影显示)单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
二、做一做
巩固新知例1计算1.(- x y )(3 x y) 2.(10a b c )(5a bc)3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) 学生活动:在练习本上计算.教师引导学生按法则进行运算,首先确定它们的系数,把系数的商作为商的系数,其次确定相同的字母,在被除式中出现的字母作为商中可能含有的字母,相同字母的指数之差作为商式中对应字母的指数,只在被除式中含有的字母指数不变,最后化简.第(1)(2)题对照法则进行,第(3)题要按运算顺序进行.第(4)题先把(2a+b)看作一个整体 (一个字母)相除,后用完全平方公式计算.教师板书如下:解: 1.(- x y )(3 x y) 2.(10a b c )(5a bc)=(- 3)x y =(105)a b c =- y =2ab c 3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) =8x y (-7xy )(14 x y ) =(2a+b) =-56x y (14 x y ) =(2a+b) =-4x y =4a +4ab+b
三、随堂练习
p40 1学生活动:让四名同学到黑板板演,其余同学在练习本上计算,同伴可交流,互相订正.教师巡回检查,对存在问题及时更正.待四名板演同学完成后,师生共同订正.
四、小结
本节课主要学习了单项式除以单项式的运算.在运用法则计算时应注意以下几点:
1.系数相除与同底数幂相除的区别;
2.符号问题;
3.指数相同的同底数幂相除商为1而不是0;4.在混合运算中,要注意运算的顺序.五、作业课本习题1.15.p41 1、2. 3
初三数学课教案篇2
一、素质目标
(一)知识教学点
使学生初步了解正弦、余弦概念;能够较正确地用sina、cosa表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.
(二)能力训练点
逐步培养学生观察、比较、分析、概括的思维能力.
(三)德育渗透点
渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.
二、教学重点、难点
1、教学重点:使学生了解正弦、余弦概念.
2、教学难点:用含有几个字母的符号组sina、cosa表示正弦、余弦;正弦、余弦概念.
三、教学步骤
(一)明确目标
1、引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”
2、明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.
(二)整体感知
只要知道三角形任一边长,其他两边就可知.
而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.
通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的'内容有了大体印象.
(三)重点、难点的学习与目标完成过程
正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.
在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:
请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△abc中,∠c为直角,我们把锐角a的对边与斜边的比叫做∠a的正弦,记作sina,锐角a的邻边与斜边的比叫做∠a的余弦,记作cosa.
若把∠a的对边bc记作a,邻边ac记作b,斜边ab记作c,则
引导学生思考:当∠a为锐角时,sina、cosa的值会在什么范围内?得结论0<sina<1,0<cosa<1(∠a为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.
教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosa、cosb”,经过反复强化,使全体学生都达到目标,更加突出重点.
例1求出图6-4所示的rt△abc中的sina、sinb和cosa、cosb的值.
学生练习1中1、2、3.
让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.
例2求下列各式的值:
为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:
(1)sin45°+cos45;(2)sin30°cos60°;
在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.
(四)总结、扩展
首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角a的正、余弦值都在0~1之间,即0<sina<1,0<cosa<1(∠a为锐角).
还发现rt△abc的两锐角∠a、∠b,sina=cosb,cosa=sinb.正弦值随角度增大而增大,余弦值随角度增大而减小.”
四、布置作业
教材习题14.1中a组3.
预习下一课内容.
五、板书设计
初三数学课教案篇3
1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
2.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.
3.旋转的基本性质.
重点
旋转及对应点的有关概念及其应用.
难点
旋转的基本性质.
一、复习引入
(学生活动)请同学们完成下面各题.
1.将如图所示的四边形abcd平移,使点b的对应点为点d,作出平移后的图形.
2.如图,已知△abc和直线l,请你画出△abc关于l的对称图形△a′b′c′.
3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(口述)老师点评并总结:
(1)平移的有关概念及性质.
(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.
(3)什么叫轴对称图形?
二、探索新知
我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.
1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?
(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.
2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)
3.第1,2两题有什么共同特点呢?
共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.
像这样,把一个图形绕着某一点o转动一个角度的图形变换叫做旋转,点o叫做旋转中心,转动的角叫做旋转角.
如果图形上的点p经过旋转变为点p′,那么这两个点叫做这个旋转的对应点.
下面我们来运用这些概念来解决一些问题.
例1如图,如果把钟表的指针看做三角形oab,它绕o点按顺时针方向旋转得到△oef,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点a,b分别移动到什么位置?
解:(1)旋转中心是o,∠aoe,∠bof等都是旋转角.
(2)经过旋转,点a和点b分别移动到点e和点f的位置.
自主探究:
请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点o作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△abc),然后围绕旋转中心o转动硬纸板,在黑板上再描出这个挖掉的三角形(△a′b′c′),移去硬纸板.
(分组讨论)根据图回答下面问题(一组推荐一人上台说明)
1.线段oa与oa′,ob与ob′,oc与oc′有什么关系?
2.∠aoa′,∠bob′,∠coc′有什么关系?
3.△abc与△a′b′c′的形状和大小有什么关系?
老师点评:1.oa=oa′,ob=ob′,oc=oc′,也就是对应点到旋转中心的距离相等.
2.∠aoa′=∠bob′=∠coc′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.
3.△abc和△a′b′c′形状相同和大小相等,即全等.
综合以上的实验操作得出:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
初三数学课教案篇4
1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点.
2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.
重点
中心对称的概念及性质.
难点
中心对称性质的推导及理解.
复习引入
问题:作出下图的两个图形绕点o旋转180°后的图案,并回答下列的问题:
1.以o为旋转中心,旋转180°后两个图形是否重合?
2.各对应点绕o旋转180°后,这三点是否在一条直线上?
老师点评:可以发现,如图所示的两个图案绕o旋转180°后都是重合的,即甲图与乙图重合,△oab与△cod重合.
像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
探索新知
(老师)在黑板上画一个三角形abc,分两种情况作两个图形:
(1)作△abc一顶点为对称中心的对称图形;
(2)作关于一定点o为对称中心的对称图形.
第一步,画出△abc.
第二步,以△abc的c点(或o点)为中心,旋转180°画出△a′b′c和△a′b′c′,如图(1)和图(2)所示.
从图(1)中可以得出△abc与△a′b′c是全等三角形;
分别连接对称点aa′,bb′,cc′,点o在这些线段上且o平分这些线段.
下面,我们就以图(2)为例来证明这两个结论.
证明:(1)在△abc和△a′b′c′中,oa=oa′,ob=ob′,∠aob=∠a′ob′,∴△aob≌△a′ob′,∴ab=a′b′,同理可证:ac=a′c′,bc=b′c′,∴△abc≌△a′b′c′;
(2)点a′是点a绕点o旋转180°后得到的,即线段oa绕点o旋转180°得到线段oa′,所以点o在线段aa′上,且oa=oa′,即点o是线段aa′的中点.
同样地,点o也在线段bb′和cc′上,且ob=ob′,oc=oc′,即点o是bb′和cc′的中点.
因此,我们就得到
1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
2.关于中心对称的两个图形是全等图形.
例题精讲
例1如图,已知△abc和点o,画出△def,使△def和△abc关于点o成中心对称.
分析:中心对称就是旋转180°,关于点o成中心对称就是绕o旋转180°,因此,我们连ao,bo,co并延长,取与它们相等的线段即可得到.
解:(1)连接ao并延长ao到d,使od=oa,于是得到点a的对称点d,如图所示.
(2)同样画出点b和点c的对称点e和f.
(3)顺次连接de,ef,fd,则△def即为所求的三角形.
例2(学生练习,老师点评)如图,已知四边形abcd和点o,画四边形a′b′c′d′,使四边形a′b′c′d′和四边形abcd关于点o成中心对称(只保留作图痕迹,不要求写出作法).
课堂小结(学生总结,老师点评)
本节课应掌握:
中心对称的两条基本性质:
1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;
2.关于中心对称的两个图形是全等图形及其它们的应用.
作业布置
教材第66页练习
初三数学课教案篇5
教学目标
1、会运用因式分解进行简单的多项式除法。
2、会运用因式分解解简单的方程。
二、教学重点与难点教学重点:
教学重点
因式分解在多项式除法和解方程两方面的应用。
教学难点:
应用因式分解解方程涉及较多的推理过程。
三、教学过程
(一)引入新课
1、知识回顾(1)因式分解的几种方法:
①提取公因式法:ma+mb=m(a+b)
②应用平方差公式:=(a+b)(a—b)
③应用完全平方公式:a 2ab+b =(ab)
(2)课前热身:①分解因式:(x +4)y — 16x y
(二)师生互动,讲授新课
1、运用因式分解进行多项式除法例
1计算:(1)(2ab —8a b)(4a—b)
(2)(4x —9)(3—2x)
解:(1)(2ab —8a b)(4a—b)=—2ab(4a—b)(4a—b)=—2ab(2)(4x —9)(3—2x)=(2x+3)(2x—3)[—(2x—3)] =—(2x+3)=—2x—3
一个小问题:这里的x能等于3/2吗?为什么?
想一想:那么(4x —9)(3—2x)呢?练习:课本p162课内练习
合作学习
想一想:如果已知()()=0,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢?(让学生自己思考、相互之间讨论!)事实上,若ab=0,则有下面的结论:(1)a和b同时都为零,即a=0,且b=0(2)a和b中有一个为零,即a=0,或b=0
试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0吗?
3、运用因式分解解简单的'方程例
2、解下列方程:(1)2x +x=0(2)(2x—1)=(x+2)解:x(x+1)=0解:(2x—1)—(x+2)=0则x=0,或2x+1=0(3x+1)(x—3)=0原方程的根是x1=0,x2=则3x+1=0,或x—3=0原方程的根是x1=,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1,x2
做一做!对于方程:x+2=(x+2),你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?
教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!
4、知识延伸解方程:(x+4)—16x =0解:将原方程左边分解因式,得(x +4)—(4x)=0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0(x+2)(x—2)=0接着继续解方程,5、练一练①已知a、b、c为三角形的三边,试判断a—2ab+b —c大于零?小于零?等于零?解:a —2ab+b —c =(a—b)—c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边a+c﹥b a﹤b+c a—b+c﹥0 a—b—c﹤0即:(a—b+c)(a—b—c)﹤0,因此a —2ab+b —c小于零。
6、挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解:∵4x — 4x+3=(4x —4x+1)+2 =(2x—1)+2 0x +2x+2 =(x +2x+1)+1 =(x+1)+10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2)+13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知识,总结收获因式分解的两种应用:
(1)运用因式分解进行多项式除法
(2)运用因式分解解简单的方程
(四)布置课后作业
作业本6、42、课本p163作业题(选做)
初三数学课教案篇6
重点、难点根据公式的特征及问题的特征选择适当的公式计算.
教学过程
一、议一议
1.边长为(a+b)的正方形面积是多少?
2.边长分别为a、b拍的两个正方形面积和是多少?
3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答(1)(a+b) (2)a +b (3)因为(a+b) = a +2ab+b ,所以 (a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面积比(2)中的正方形面积大.
二、做一做
例1. 利用完全平方式计算1. 102 。
2. 197 师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的.平方,且计算尽可能简便.学生活动:在练习本上演示此题.让学生叙述
教师板书.解:1.102 =(100+2) 2.197 =(200-3) =100 +2 loo 2+2, =200 -2 2o0 3十3 ,=10000+400+4 =40000-1200+9 =10404 =38809 例2.计算:1.(x-3) -x
2.(2a+b- )(2a-b+ )师生共同分析:1中(x-3) 可利用完全平方公式.学生动笔解答第1题.教师根据学生解答情况,板书如下:解:1. (x-3) -x = x +6x+9-x =6x+9师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神.学生活动:分小组讨论第(2)题的解法.此题学生解答,难度较大.教师要引导学生使用加法结合律,为使用公式创造条件.学生小组交流派代表进行全班交流.最后教师板书解题过程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-
三、试一试
计算:
1. (a+b+c)
2. (a+b) 师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c) =[a+(b+c)] 对于(2)可化为(a+b) =(a+b)(a+b) .学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述。
教师板书.解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc
四、随堂练习
p38 1
五、小结
本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点. 1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(ab) = a b 的错误,或(ab) = a ab+b (漏掉2倍)等错误.2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.
六、作业
课本习题1.14 p38 1、2、3.
七、教后反思
1.9 整式的除法第一课时 单项式除以单项式教学目标1.经历探索单项式除法的法则过程,了解单项式除法的意义.
2.理解单项式除法法则,会进行单项式除以单项式运算.重点、难点重点:单项式除以单项式的运算.难点:单项式除以单项式法则的理解.
初三数学课教案6篇相关文章:
★ 学前数学教案6篇