正方体和长方体面积教案7篇

时间:
Fallinlove
分享
下载本文

一份成功的教案能够让教师在课堂上更加自信,从容应对各种情况,教师在课堂上实施教案时,完整的知识链条能增强学生的自信,二十范文网小编今天就为您带来了正方体和长方体面积教案7篇,相信一定会对你有所帮助。

正方体和长方体面积教案7篇

正方体和长方体面积教案篇1

教学目标:

1、使学生初步掌握长方体、正方体的表面积的概念;

2、学生通过观察、操作、探究等合作活动初步掌握长方体和正方体表面积的计算方法;

3、能较灵活地运用所学知识解答简单的实际问题;

教学设想:

一. 创设情境,引入新知

1.谈话

师:你们快要毕业了,我们班级陈艾菲的妈妈为我们班级的每个孩子准备了一份特殊的礼物。对!是一本长方体的相册,里面有我们班每一个同学的照片。

多媒体:相册

师:我想将这份特别的礼物也送给学校的领导,你们觉得我这个提议怎么样?我打算先将这份礼物包装一下,那我得准备一张多大的包装纸呢?

2.引题

师:你能说说什么是长方体的表面积呢?

板书:长方体六个面的总面积,叫做它的表面积。

二. 实践操作,探究方法

1.提出问题。

师:长方体的表面积和什么有关呢?

多媒体:已知这本长方体的相册长是30厘米,宽是28厘米,高是5厘米,包装这样一本相册,至少要多少包装纸?

师:小组可以先讨论讨论,再把算式写在纸上,贴到黑板上来。

2. 分组合作进行计算。

3. 小组讨论并把算式贴在黑板上:

方法一:30282+3052+2852

方法二:(3028+305+285)2

4. 在完整解答过程中要注意什么?注意写解,单位。

5. 小结:计算长方体的表面积一般有哪几种方法?

(根据总结,演示多媒体)

6. 练习:

师:老师的难题解决了。那你们昨天不是回家测量了长方体形状物体的长、宽、高,现在你们给同桌求它的表面积好吗?注意只列式不计算。

出示几份学生计算物体的表面积:

(1) 餐巾纸盒

问:求餐巾纸盒的表面积有什么用呢?

(2)大橱

问:求大橱的表面积有什么用呢?

7. 出示课题:

师:今天这节课我们探讨了什么问题呢?

出示课题:长方体的表面积计算

8. 这里有个长方体,看看哪个算式是正确的?

(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是( )

a.272+672+62

b.(27+26+67)2

c.27+26+67

(2)给一个长和宽都是1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是( )

a.(11+13+13)2

b. 112+134

c.112+143

问:那2、3、两个算式有什么道理呢?小组可以先讨论讨论。

师:先说说112+134有什么道理?

(多媒体演示)

生:112求的是上下底的面积,因为上下底是正方形,所以其余4个面的面积都相等,就用13先求出一个面,再4求出4各面的总面积

师:那112+143有什么道理呢?

生:112求的是上下底的面积,正方形的边长就是长方形的宽。14就是4个长方形拼成的大长方形的长,3就是大长方形的面积。

(3)一个长方体的长、宽、高都是4m,它的表面积是多少?( )

a. 444

b. (44+44+44)2

c. 446

问:为什么第3个答案也是正确的?

(多媒体演示)

9.问:这节课你掌握了哪些本领?

完整板书:和正方体

三.巩固练习:

1.出示:五(1)班要办小小图书馆,需要一只长4分米,宽1.5分米,高2分米的铁箱,现在有一张边长6分米的正方形白铁皮,能做的'成吗?

(小组讨论)

生:计算的结果是能做成的

生:66=36(平方分米)

(41.5+42+21.5)2=34(平方分米)

师:铁皮的面积是36平方分米,书箱的表面积是34平方分米,看来是够的,那老师就开始做了。

(教师演示)

问:不够了,为什么会不够呢?

问:那怎么办?

生:把旁边多余的切下来移到左面这里,用焊接的方法拼起来。

师:由于我们所用的材料是白铁皮,所以我们可以用焊接的方法拼,那在怎样的情况我们做不成需要的物品了呢?

师:所以在制作物品的过程中,还不能单看表面积的大小是否合适,还需要考虑到其他种种因素,我们不能把所学的知识生搬硬套地运用到实践中去,要具体问题具体分析。

四、课后拓展练习:

多媒体出示:一个火柴盒

问:如果用纸板做一个这样的火柴盒,我们该怎样知道至少要多少纸板呢?可以怎样计算?

师:我就把这个问题留给同学们,请同学们课后来解决好吗?可以独立思考,也可以几个同学合作解决。明天上课时我们来作交流。

五、 课堂小结

师:今天学习了哪些知识?什么是长方体和正方体的表面积?在计算长方体和正方体表面积时要注意些什么呢?

正方体和长方体面积教案篇2

同学们好,下面我们来学习“长方体和正方体的表面积。”在没学新课之前你们回忆一下,长方体和正方体的面积怎样求?我们先来复习一下长方形和正方形面积公式,长方形的面积=长x宽,正方形的面积=边长x边长。

这是一个长方体,它是由六个长方形围成的,相对的两个面的面积相等。这是一个正方体,它是由六个正方形围成的,并且六个面都是相等的正方形,那么,什么叫长方体或正方体的表面积呢?

长方体或正方体六个面的总面积,叫做它的表面积。

下面我们来观察长方体,只要我们求出每个面的面积,再把它们相加就可以了。如果把长方体展开,会得到怎样的图形呢?

我们分别展开长方体的'上下面、左右面、前后面,就变成这样一个平面图形,它的上面和下面是两个完全相等的长方形,请你们认真观察,这两个长方形的长和宽分别是长方体的哪条边?分别是长方体的长和宽,那么上下两个面的面积就等于长x宽x2。我们再来观察一下前后面,前后面也是完全一样的长方形,它的长和宽又分别是长方体的哪两条边呢?分别是长方体的长和高,同学们很快就能求出前后面的面积,前后面的面积等于长x高x2。最后再来观察一下左右两个面,它的长和宽又分别是长方体的哪两条边。分别是长方体中的高和宽,同学们很容易就能求出左右面的面积,左右面的面积等于高x宽x2。

现在老师把这个平面图形还原成长方体,你们再仔细观察一下,上面、前面、右面分别和长方体的哪两条边有关系,上面和长方体的长宽有关系.前面和长方体的长高有关系,右面和长方体的高宽有关系、我们只要求出上面、前面、右面的面积,用它们的和再乘2,就求出了长方体的表面积。所以,长方体的表面积=(长x宽十长x高十宽x高)x2,会求长方体的表面积,求正方体的表面积就简单多了,正方体是由六个完全一样的正方形围成的,每个正方形的边长又都是正方体的棱长。用棱长乘棱长先求出一个面的面积,再来乘6就可以了,所以正方体的表面积等于棱长x棱长x6,也可以写成棱长的平方x6。我们掌握了长方体和正方体表面积的求法,就可以解决生活中的实际问题了。

正方体和长方体面积教案篇3

教学内容

长方体和正方体的表面积概念,长方体和正方体表面积的计算

教学目标

1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。

2.会用求长方体和正方体表面积的方法解决生活中的简单问题。

3.培养学生分析能力,发展学生的空间概念。

教学重点

掌握长方体和正方体表面积的计算方法。

教学难点

会用求长方体和正方体表面积的方法解决生活中的简单问题

教具运用

长方体、正方体纸盒,剪刀,投影仪

教学过程

一、复习导入

1.什么是长方体的长、宽、高?什么是正方体的棱长?

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

二、新课讲授

1.教学长方体和正方体表面积的概念。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

2.学习长方体和正方体表面积的计算方法。

(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

方法一:长方体的表面积=6个面的面积和

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)

方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)

方法三:(上面的面积+前面的面积+左面的面积)×2

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)

(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?

(6)请同学们尝试自己解答教材第24页例2, 集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业

1.完成教材第23页“做一做”。

2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结

今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?

板书设计:

教学内容:

求一些不是完整六个面的长方体、正方体的`表面积

教学目标:

1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。

2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲

教学重点:

能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。

教学难点:

求一些不是完整六个面的长方体、正方体的表面积。

教具运用:

课件

教学过程:

一、复习导入

师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)

1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?

2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。

二、新课讲授

1.教材25页第5题

(1)一个长方体的饼干盒,长10 cm、宽6 cm、高12 cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?

(2)学生读题,看图,理解题意。

(3) “上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)

(4)学生尝试独立解答。

(5)集体交流反馈。

方法一:10×12×2+6×12×2=240+144=384 (cm2)

方法二:(10×12+6×12)×2=(120+72)×2=384 (cm2)

答:这张商标纸的面积至少需要384平方厘米。

2.教材26页第8题

(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)

(2)学生读题,看图,理解题意。

(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)

(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。

3×3×5=9×5=45 (dm2)

答:制作这个鱼缸时至少需要玻璃45平方分米。

三、课堂作业

完成教材第26页练习六第9、10题。

四、课堂小结

提问:同学们,这节课我们学习了求一些不是完整六个面的长方体、正方体的表面积,这节课你有什么收获?

五、课后作业

完成练习册中本课时练习。

板书设计:

正方体和长方体面积教案篇4

教学目标

(一)理解长方体和正方体表面积的意义。

(二)理解并掌握长方体和正方体表面积的计算方法。

(三)培养和发展学生的空间观念。

教学重点和难点

(一)长方体、正方体表面积的意义和计算方法。

(二)确定长方体每一个面的长和宽。

教学用具

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

学具:长方体、正方体纸盒、剪刀。

教学过程设计

(一)复习准备

1.口答填空。

(1)长方体有( )个面,一般都是( ),相对的面的( )相等;

(2)正方体有( )个面,它们都是( ),正方形各面的( )相等;

(3)这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;

(4)这是一个( ),它的校长是( )厘米,它的棱长之和是( )厘米。

2.说一说长方体和正方体的区别?

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)

(二)学习新课

1.长方体和正方体表面积的意义。

教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。

教师:长方体有几个面?学生:6个面。

教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。

请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。

再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。

教师:(拿着长方体盒子)这个长方体的表面积能一眼全看到吗?想一想有什么办法能一眼全看到?

学生讨论。(把六个面展开放在一个平面上。)

教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。

教师:请再说一说什么是长、正方体的表面积。(学生口答。)

教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

2.长方体表面积的计算方法。

(1)请同学拿着自己的长方体(用展开图折上)。教师:请量出它的长、宽和高,说一说哪些面大小相等?指出相邻的三个面各用哪两条棱作为长和宽?

学生四人一组边操作边讨论后归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;前后两个面大小相等,它是由长方体的长和高作为长和宽的;左右两个面大小相等,它是由长方体的高和宽作为长和宽的`。

教师:对长方体实物,我们已经会找它每个面对应的长和宽了,在平面图上会不会找呢?

请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。

教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)

(图像要验证相对的面相等,展示每个面对应的长和宽。)

教师:想一想,长方体的表面积如何计算?

学生讨论后归纳,老师板书:

上下面:长×宽×2

前后面:长×高×2

左右面:高×宽×2

(2)请同学们用新学的知识来解答下面的问题:例1(投影片)做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少厘米2硬纸板?

学生口答老师板书:(或学生板书,同时其余同学填书上。)

解法1:6×5×2+6×4×2+5×4×2

=60+48+40

=148(厘米2)

解法2:(6×5+6×4+5×4)×2

=(30+24+20)×2

=74×2

=148(厘米2)

答:至少要用148厘米2纸板。

练一练:(投影片)一个长方体长4米,宽3米,高2.5米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)

教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?

学生:应该少算上边的一面。列式:

4×3+4×2.5×2+3×2.5×2

3.正方体表面积的计算方法。

(1)教师:看看自己的正方体表面展开图,能说出正方体的表面积如何求吗?

学生:一个面的面积乘以6。

教师:用棱长来表示它的表面积。

学生:棱长×棱长×6

(2)试解下面的题。

例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。

请同学们填在书上,一位同学板书:

32×6

=9×6

=54(厘米2)

答:它的表面积是54厘米2。

教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

学生:少一个面。列式:32×5

教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。

(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)

用学生投影片集体订正。

(三)巩固反馈

1.口答课本p27:1。

2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)

3.口答。判断正误,并说明理由。

(1)长方体的三角棱分别叫它的长、宽、高。 ( )

(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。 ( )

(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。( )

(四)课堂总结及课后作业

1.什么是长、正方体的表面积。长、正方体的表面积如何计算。

2.作业:课本p27:3,4,5。

课堂教学设计说明

长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。

教学过程中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。

本节新课教学分为三部分。

第一部分教学长、正方体表面积的意义。

第二部分教学长方体表面积的计算方法。

第三部分教学正方体表面积的计算方法。

板书设计

正方体和长方体面积教案篇5

教学目标:

结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。

知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。

3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。

教学重点

1、长方体、正方体表面积的意义和计算方法。

2、确定长方体每一个面的长和宽。

教学难点

1、长方体、正方体表面积的意义和计算方法。

2、确定长方体每一个面的.长和宽。

教学媒体

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

学具:长方体、正方体纸盒、剪刀。

教学过程

一、复习准备。

(一)口答填空。

1.长方体有( )个面,一般都是( ),相对的面的( )相等;

2.正方体有( )个面,它们都是( ),正方形各面的( )相等;

3.这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;

4.这是一个( ),它的棱长是( )厘米,它的棱长之和是( )厘米。

(二)说一说长方体和正方体的区别?

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)

二、学习新课。

(一)长方体和正方体表面积的意义。

1.教师提问:什么叫做面积?

长方体有几个面?正方体有几个面?

(用手按前、后,上、下,左、右的顺序摸一遍)

2.教师明确:这六个面的总面积叫做它的表面积。

3.学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积。

4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

(二)长方体表面积的计算方法

1.学生归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

前后两个面大小相等,它是由长方体的长和高作为长和宽的;

左右两个面大小相等,它是由长方体的高和宽作为长和宽的。

2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)

老师板书:

上下面:长×宽×2

前后面:长×高×2

左右面:高×宽×2

3.练习解答。

做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

正方体和长方体面积教案篇6

设计说明

1.加强动手操作,促进学生的思维发展。

因为数学知识具有抽象性,所以要多引导学生在操作中思考,培养学生掌握技能技巧,促进学生的思维发展。本节课的教学设计在让学生理解长方体、正方体表面积的意义时,先让学生动手操作,“解剖”长方体和正方体,展示出长方体和正方体各自的6个面。然后通过比较分析,深刻地体会长方体或正方体各自6个面的面积之和就是这个长方体或正方体的表面积。

2.合作探究,实现自主发现。

合作探究是学生学习数学的主要方式之一,它能促进学生对抽象的数学知识的理解。在学生感知了表面积的意义之后,放手让学生在小组内合作交流,自主探究长方体表面积的不同计算方法,然后根据正方体的特征归纳出正方体表面积的计算方法,培养学生的优化思维和求异思维。

课前准备

教师准备ppt课件长方体纸盒

学生准备长方体牙膏盒教学过程

教学过程

⊙猜测质疑,引入新课

师:长方体和正方体在我们的生活中应用得非常广泛,老师也收集到这样两个纸盒(出示两个大小比较接近的长方体纸盒),怎样才能比较出这两个长方体纸盒,谁用的`纸板比较多呢?(学生讨论后汇报)

设计意图:通过比较谁用的纸板比较多,使学生产生拆开纸盒研究长方体表面积的想法,从而主动探究体与面的关系,同时引发学生的争论,使其主动思考,寻求解决问题的方法。

⊙演示操作,形成表象,建立概念

1.感受表面积的意义。

(1)把长方体牙膏盒沿棱剪开并展开,分别用“上”“下”“前”“后”“左”“右”标明6个面,并让学生观察后回答:

①长方体哪几组面的面积相等?

②长方体每个面的长和宽与长方体的长、宽、高有什么关系?

(学生观察后汇报)

师明确:长方体上、下两个面的面积相等,每个面的长和宽就是长方体的长和宽;前、后两个面的面积相等,每个面的长和宽就是长方体的长和高;左、右两个面的面积相等,每个面的长和宽就是长方体的宽和高。

(2)什么叫长方体的表面积?

(板书:长方体6个面的总面积,叫做它的表面积)

设计意图:通过亲自动手操作剪开并展开长方体实物,让学生真正参与获取知识的过程。在实际观察中让学生充分感知并建立表面积的表象,从而发现并归纳出表面积的意义。

2.探究求长方体表面积的计算方法。

(1)回忆。

师:同学们,你们还记得长方形的面积计算公式吗?

预设

生:长方形的面积=长×宽。

(2)议一议。

长方体上、下面的面积=()×();

长方体前、后面的面积=()×();

长方体左、右面的面积=()×()。

(3)总结长方体表面积的计算方法。

方法一长方体的表面积=长×宽×2+长×高×2+宽×高×2,用字母表示为s=2ab+2ah+2bh。

方法二长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示为s=(ab+ah+bh)×2。

正方体和长方体面积教案篇7

教学目标:

通过练习使学生能熟练地求正方体、长方体的表面积。

教学重点和难点:

重点:正方体、长方体的表面积的计算。

难点:正方体、长方体的表面积的计算。

教学媒体:教学平台

课前学生准备:课堂练习本

教学过程:

课前准备:

长方体体积计算公式:v=abh 正方体体积计算公式:v=a3

长方体表面积计算公式:s=2(ab+ah+bh) 正方体表面积计算公式:s=6a2

练习

1. 计算下面形体的表面积。(单位:厘米)

(1)解:

(2)

(1)s=2(ah+ab+bh)

=2×(6×2+6×1+1×2)

=2×(12+6+2)

=2×20

=40(平方厘米)

答:长方体的表面积是40平方厘米。

(2)解:s=6a2

=6×62

=6×(6×6)

=6×36

=216(平方厘米)

答:正方体的表面积是216平方厘米。

(3)解:s=2(ah+ab+bh)

=2×(3×12+3×1+1×12)

=2×(36+3+12)

=2×51

=102(平方厘米)

答:长方体的表面积是102平方厘米。

(4)解:s=2(ah+ab+bh)

=2×(4×4+4×3+3×4)

=2×(16+12+12)

=2×40

=80(平方厘米)

答:长方体的表面积是80平方厘米。

(5)解:s=2(ah+ab+bh)

=2×(5×5+5×1+1×5)

=2×(25+5+5)

=2×35

=70(平方厘米)

答:长方体的表面积是70平方厘米。

2. 想一想,上面形体(4)(5)的表面积还可以怎么求?

求出前面的面积再乘以4就是上下左右4个面的面积之和,再加上前后面的`面积之和,就是它的表面积。

3. 填空:

(1)长方体的表面积是(2×(9×3+9×2+2×3) )(填算式)。

(2)长方体的表面积是(2×(8×1+8×4+4×1))(填算式)。

(3)长方体的表面积是(2×(1×5+1×5+5×5)或5×5+4×(1×5) )(填算式)。

(4)正方体的表面积是(6×(7×7))(填算式)。

(5)长方体表面积计算公式是(s=2(ah+ab+bh))。

(6)正方体表面积计算公式是(s=6a2)。

4. 一个长方体的长是2厘米,宽3厘米,高6厘米。分别求出它的底面面积,前面面积与左面面积。

解:2×3=6(平方厘米)

2×6=12(平方厘米)

3×6=18(平方厘米)

答:它的底面面积是6平方厘米,前面面积12平方厘米,左面面积是18平方厘米。

5. 长方体的长是5厘米,宽4厘米,高3厘米,它的表面积是多少平方厘米?

解:s=2(ah+ab+bh)

=2×(5×3+5×4+4×3)

=2×(15+20+12)

=2×47

=94(平方厘米)

答:长方体的表面积是94平方厘米。

6. 做一个长15分米,宽4米,高3分米的长方体铁皮油箱,至少需要多少铁皮?

解:4米=40分米

s=2(ah+ab+bh)

=2×(15×3+15×40+40×3)

=2×(45+600+120)

=2×765

=1530(平方分米)

答:长方体的表面积是1530平方分米。

总结:长方体表面积计算公式是s=2(ah+ab+bh),正方体表面积计算公式是s=6a2。

检测目标达成练习:练习册p15

正方体和长方体面积教案7篇相关文章:

力和运动教案最新6篇

动物和天气教案6篇

力和运动教案参考5篇

兔子和狐狸的教案8篇

位置和方向教案8篇

力和运动教案精选6篇

整数和小数教案优秀8篇

中国雪和中国盐教案8篇

中班语言云彩和风儿教案6篇

小班数学《1和许多》教案5篇

正方体和长方体面积教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
87545